Management Options and Effects on a Marine Ecosystem: Assessing the Future of the Baltic

AMBIO ◽  
2007 ◽  
Vol 36 (2) ◽  
pp. 243-249 ◽  
Author(s):  
Fredrik Wulff ◽  
Oleg P. Savchuk ◽  
Alexander Sokolov ◽  
Christoph Humborg ◽  
Carl-Magnus Mörth
2015 ◽  
Vol 73 (5) ◽  
pp. 1343-1356 ◽  
Author(s):  
Irene D. Alabia ◽  
Sei-Ichi Saitoh ◽  
Hiromichi Igarashi ◽  
Yoichi Ishikawa ◽  
Norihisa Usui ◽  
...  

Abstract Climate-driven changes in the marine ecosystem largely influence the distribution, abundance, and the consequent availability of marine resources to the fishery. In this study, we examined the potential habitat distributions of the neon flying squid (Ommastrephes bartramii) under the projected impacts of ocean warming. We used the sea surface temperature (SST) from the three CMIP5 climate scenarios (RCP4.5, RCP6.0, and RCP8.5) with the low to high future emissions. Based on the squid habitat models, SST showed the highest effect on the present potential squid habitat distribution that accounted for at least 60% of the predicted spatial patterns from May to July 2000–2010. This result underpinned the species' high sensitivity to the temperature changes in its feeding environments. Moreover, the projected future potential squid habitats revealed pronounced differences in the spatial and temporal patterns relative to the present habitat distributions across the different regions of the western and central North Pacific. The future squid habitat predictions revealed a net reduction in the suitable squid habitat coupled with the corresponding northward habitat retreat. Moreover, the magnitude of the predicted habitat changes was proportional to the levels of warming for the representative periods from May to July 2025, 2050, and 2100. The highest decrease in the spatial extent and poleward retreat of the potential squid habitat were observed from May to July 2100 under the RCP 8.5 scenario. These trends could translate to shorter squid fishing periods and offshore shifts of the squid fishing grounds. Thus, insights into the future spatio-temporal patterns and trajectories of the potential squid habitats could lend important implications on the availability of squid resources to the fishery and subsequent evaluation of squid fishery management options under climate change.


2018 ◽  
Vol 75 (7) ◽  
pp. 2463-2475 ◽  
Author(s):  
Romain Frelat ◽  
Alessandro Orio ◽  
Michele Casini ◽  
Andreas Lehmann ◽  
Bastien Mérigot ◽  
...  

Abstract Fisheries and marine ecosystem-based management requires a holistic understanding of the dynamics of fish communities and their responses to changes in environmental conditions. Environmental conditions can simultaneously shape the spatial distribution and the temporal dynamics of a population, which together can trigger changes in the functional structure of communities. Here, we developed a comprehensive framework based on complementary multivariate statistical methodologies to simultaneously investigate the effects of environmental conditions on the spatial, temporal and functional dynamics of species assemblages. The framework is tested using survey data collected during more than 4000 fisheries hauls over the Baltic Sea between 2001 and 2016. The approach revealed the Baltic fish community to be structured into three sub-assemblages along a strong and temporally stable salinity gradient decreasing from West to the East. Additionally, we highlight a mismatch between species and functional richness associated with a lower functional redundancy in the Baltic Proper compared with other sub-areas, suggesting an ecosystem more susceptible to external pressures. Based on a large dataset of community data analysed in an innovative and comprehensive way, we could disentangle the effects of environmental changes on the structure of biotic communities—key information for the management and conservation of ecosystems.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Anaëlle J. Lemasson ◽  
Antony M. Knights ◽  
Murray Thompson ◽  
Gennadi Lessin ◽  
Nicola Beaumont ◽  
...  

Abstract Background Numerous man-made structures (MMS) have been installed in various parts of the ocean (e.g. oil and gas structures, offshore wind installations). Many are now at, or nearing, the end of their intended life. Currently, we only have a limited understanding of decommissioning effects. In many locations, such as the North Sea, regulations restrict decommissioning options to complete removal, with little consideration of alternative management options might offer. To generate a reliable evidence-base to inform the decision-making processes pertaining to marine MMS management, we propose a wide-encompassing systematic map of published research on the ecosystem effects (including ecosystem services) of marine MMS while in place and following cessation of operations (i.e. including effects of alternative decommissioning options). This map is undertaken as part of the UKRI DREAMS project which aims to develop a system to show the relative effects of implementing different decommissioning strategies in the North Sea. Method For the purpose of this map, we will keep our focus global, in order to subsequently draw comparisons between marine regions. The proposed map will aim to answer the following two primary questions: 1. What published evidence exists for the effects of marine man-made structures while in place on the marine ecosystem? 2. What published evidence exists for the effects of the decommissioning of marine man-made structures on the marine ecosystem? The map will follow the Collaboration for Environmental Evidence Guidelines and Standards for Evidence Synthesis in Environmental Management. Searches will be run primarily in English in at least 13 databases and 4 websites. Returns will be screened at title/abstract level and at full-text against pre-defined criteria. Relevant meta-data will be extracted for each study included. Results will be used to build a database of evidence, which will be made freely available. This map, expected to be large, will improve our knowledge of the available evidence for the ecosystem effects of MMS in the global marine environment. It will subsequently inform the production of multiple systematic-reviews and meta-analyses.


2015 ◽  
Vol 12 (8) ◽  
pp. 5907-5940
Author(s):  
T. P. Sasse ◽  
B. I. McNeil ◽  
R. J. Matear ◽  
A. Lenton

Abstract. Ocean acidification is a predictable consequence of rising atmospheric carbon dioxide (CO2), and is highly likely to impact the entire marine ecosystem – from plankton at the base to fish at the top. Factors which are expected to be impacted include reproductive health, organism growth and species composition and distribution. Predicting when critical threshold values will be reached is crucial for projecting the future health of marine ecosystems and for marine resources planning and management. The impacts of ocean acidification will be first felt at the seasonal scale, however our understanding how seasonal variability will influence rates of future ocean acidification remains poorly constrained due to current model and data limitations. To address this issue, we first quantified the seasonal cycle of aragonite saturation state utilizing new data-based estimates of global ocean surface dissolved inorganic carbon and alkalinity. This seasonality was then combined with earth system model projections under different emissions scenarios (RCPs 2.6, 4.5 and 8.5) to provide new insights into future aragonite under-saturation onset. Under a high emissions scenario (RCP 8.5), our results suggest accounting for seasonality will bring forward the initial onset of month-long under-saturation by 17 years compared to annual-mean estimates, with differences extending up to 35 ± 17 years in the North Pacific due to strong regional seasonality. Our results also show large-scale under-saturation once atmospheric CO2 reaches 486 ppm in the North Pacific and 511 ppm in the Southern Ocean independent of emission scenario. Our results suggest that accounting for seasonality is critical to projecting the future impacts of ocean acidification on the marine environment.


1997 ◽  
Vol 9 (3) ◽  
pp. 235-242 ◽  
Author(s):  
David J. Agnew

The Convention on the Conservation of Antarctic Marine Living Resources states as part of its objective the maintenance of ecological relationships and the prevention of irreversible changes to the ecosystem. The Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has implemented an Ecosystem Monitoring Programme (CEMP) for the Antarctic marine environment to give effect to this requirement. The design phase of the programme took three years. The programme has been fully implemented since 1987 and involves monitoring selected predator, prey and environmental indicators of ecosystem performance. The central aim of the programme is the detection of changes in these indicators and the interpretation as to whether these changes are due to natural events or the harvesting of marine living resources. The core of the programme is the acquisition, centralised storage and analysis of standardised monitoring data combined with a strong emphasis on empirical and modelling based research. This both modifies the monitoring approach in line with changing requirements and creates a sound scientific background against which to test the effects of management options on components of the Antarctic ecosystem. The development of procedures for translating monitoring results into management advice is a critical part of the programme. Management takes the form of the regulation of fishing activities. Since 1987 CEMP has collected data on six bird and seal species at 15 sites around the Antarctic. Up to 14 parameters of predator performance and 10 parameters of prey and environmental performance are collected at each site. The data sets collected by CEMP form an extremely powerful tool for understanding and managing the Antarctic marine ecosystem.


2002 ◽  
Vol 29 (2) ◽  
pp. 192-206 ◽  
Author(s):  
Carlos M. Duarte

Seagrasses cover about 0.1–0.2% of the global ocean, and develop highly productive ecosystems which fulfil a key role in the coastal ecosystem. Widespread seagrass loss results from direct human impacts, including mechanical damage (by dredging, fishing, and anchoring), eutrophication, aquaculture, siltation, effects of coastal constructions, and food web alterations; and indirect human impacts, including negative effects of climate change (erosion by rising sea level, increased storms, increased ultraviolet irradiance), as well as from natural causes, such as cyclones and floods. The present review summarizes such threats and trends and considers likely changes to the 2025 time horizon. Present losses are expected to accelerate, particularly in South-east Asia and the Caribbean, as human pressure on the coastal zone grows. Positive human effects include increased legislation to protect seagrass, increased protection of coastal ecosystems, and enhanced efforts to monitor and restore the marine ecosystem. However, these positive effects are unlikely to balance the negative impacts, which are expected to be particularly prominent in developing tropical regions, where the capacity to implement conservation policies is limited. Uncertainties as to the present loss rate, derived from the paucity of coherent monitoring programmes, and the present inability to formulate reliable predictions as to the future rate of loss, represent a major barrier to the formulation of global conservation policies. Three key actions are needed to ensure the effective conservation of seagrass ecosystems: (1) the development of a coherent worldwide monitoring network, (2) the development of quantitative models predicting the responses of seagrasses to disturbance, and (3) the education of the public on the functions of seagrass meadows and the impacts of human activity.


Sign in / Sign up

Export Citation Format

Share Document